МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

МиКМ

проф. А.В. Ковалев 16.06.2021г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.14 Информационные технологии в механике

- **1.** Шифр и наименование направления подготовки/специальности: 01.04.03 Механика и математическое моделирование
- **2.** Профиль подготовки/специализации: Прикладная механика и компьютерное моделирование
- 3. Квалификация (степень) выпускника: Магистр
- 4. Форма образования: Очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** Механики и компьютерного моделирования
- 6. Составители программы:

Ковалев Алексей Викторович, доктор физ-мат. наук, профессор, факультет ПММ, кафедра МиКМ, kovalev@amm.vsu.ru

7. Рекомендована: НМС факультета ПММ протокол №10 от 15.06.2021.

8. Учебный год: 2021 - 2022 Семестр(-ы): 1,2

9. Цели и задачи учебной дисциплины:

Целями освоения учебной дисциплины являются:

- обучение студентов методам использования современных компьютерных пакетов для построения геометрических моделей, конечно-элементных сеток и их приложения к современным задачам

Задачи учебной дисциплины:

- ознакомить с существующими методами построения геометрических моделей, конечно-элементных сеточных моделей, с современными тенденциями развития пакетов инженерного анализа; научить современным пакетам программ для построения геометрии области решения задачи и их сеточных дискретизаций, создавать программные средства построения геометрии области решения задачи и сеточных аппроксимаций для решения задач механики.
- **10. Место учебной дисциплины в структуре ООП:** Дисциплина относится к базовому блоку Б1. Для освоения дисциплины необходимы знания дисциплин: теоретическая механика, основы механики сплошной среды, методы вычислений, компьютерные науки. Освоение дисциплины позволит в дальнейшем изучать специальные курсы по профилю подготовки, такие как вычислительный эксперимент в гидродинамике, компьютерные модели в механике, компьютерные технологии в пластических течениях.

11. Компетенции обучающегося, формируемые в результате освоения дисциплины:

плипы.					
Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые резуль- таты обучения	
ОПК-4	Способен использовать и создавать эффективные программные средства для решения задач механики	ОПК-4.2	Способен создавать эффективные программные средства для решения задач науки и техники	Знать: основы современных информационных технологий Уметь: формулировать в проблемно-задачной форме нематематические типы знания (в том числе гуманитар-	
		ОПК-4.3	Использует современные информационные технологии, программные средства для решения задач в профессиональной области	ные) Владеть: методами физического и математического моделирования при анализе глобальных проблем на основе глубоких знаний фундаментальных физикоматематических дисциплин, теории эксперимента и компьютерных наук	

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 4/144.

13. Трудоемкость по видам учебной работы

			Трудоемкость		
Вид учебной работы		Всего	По семестрам		
,			1	2	
Контактная ра	абота				
	лекции	32	16	16	
	практические				
в том	лабораторные	32	16	16	
числе:	курсовая работа				
	др. виды(при наличии)				
Самостоятельная работа		80	40	40	
Промежуточная аттестация <i>(для</i>			зачет	зачет с	
экзамена)				оценкой	
Итого:		144	72	72	

13.1. Содержание разделов дисциплины

№ п/п	Наименование раз- дела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
		1. Лекции	
1.	Компьютерные технологии и задачи прочности	Обзор современного программного обеспечения предназначенного для решения задач механики деформируемого твердого тела	Информационные технологии в ме- ханике https://edu.vsu.ru/c ourse/view.php?id =16046
2.	MSC.Nastran и AN- SYS.Mechanical	Сравнение двух пакетов программ, предназначенных для решения задач прочности	Информационные технологии в ме- ханике https://edu.vsu.ru/c ourse/view.php?id =16046
3.	Компьютерные технологии и задачи гидрогазодинамики	Обзор современного программного обеспечения предназначенного для решения задач течения жидкости и газа	Информационные технологии в ме- ханике https://edu.vsu.ru/c ourse/view.php?id =16046
4.	ANSYS.CFX и NU- MECA.Open	Сравнение двух пакетов программ, предназначенных для решения задач гидрогазодинамики	Информационные технологии в ме- ханике

			https://edu.vsu.ru/c ourse/view.php?id =16046
5.	Перспективы развития компьютерного моделирования	Совместный анализ и решение задач по тепловым, прочностным и газодинамическим расчетам	Информационные технологии в ме- ханике
			https://edu.vsu.ru/c ourse/view.php?id =16046
		2. Лабораторные занятия	
1.	Компьютерные тех- нологии и задачи прочности	Обзор современного программного обеспечения предназначенного для решения задач механики деформиру-емого твердого тела	Информационные технологии в ме- ханике
			https://edu.vsu.ru/c ourse/view.php?id =16046
2.	MSC.Nastran и AN- SYS.Mechanical	Сравнение двух пакетов программ, предназначенных для решения задач прочности	Информационные технологии в ме- ханике
			https://edu.vsu.ru/c ourse/view.php?id =16046
3.	Компьютерные тех- нологии и задачи гидрогазодинамики	Обзор современного программного обеспечения предназначенного для решения задач течения жидкости и газа	Информационные технологии в ме- ханике
			https://edu.vsu.ru/c ourse/view.php?id =16046
4.	ANSYS.CFX и NU- MECA.Open	Сравнение двух пакетов программ, предназначенных для решения задач гидрогазодинамики	Информационные технологии в ме- ханике
			https://edu.vsu.ru/c ourse/view.php?id =16046
5.	Перспективы развития компьютерного моделирования	Совместный анализ и решение задач по тепловым, прочностным и газодинамическим расчетам	Информационные технологии в ме- ханике
			https://edu.vsu.ru/c ourse/view.php?id =16046

13.2. Темы (разделы) дисциплины и виды занятий:

Nº	Наименование раз-	Лекции	Практиче-	Лабора-	Самостоя-	Всего
п/п	дела дисциплины		ские	торные	тельная рабо-	
	Доло Догодини				та	
1.	Компьютерные тех-	8		4	14	26
	нологии и задачи					
	прочности					
2.	MSC.Nastran и	5		9	18	32
	ANSYS.Mechanical					
3.	Компьютерные тех-	6		6	20	32
	нологии и задачи					
	гидрогазодинамики					
4.	ANSYS.CFX и	5		9	18	32
	NUMECA.Open					
5.	Перспективы разви-	8		4	10	22
	тия компьютерного					
	моделирования					
	Итого	32		32	80	144

14. Методические указания для обучающихся по освоению дисциплины

Студентам, изучающим дисциплину, рекомендуется проведение самостоятельной работы с конспектами лекций, методическими указаниями, литературой. При использовании дистанционных образовательных технологий и электронного обучения выполнять все указания преподавателей по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

Nº п/п	Источник
1.	Банщикова, И. А. Комплекс ANSYS: анализ устойчивости конструкций: учебное пособие / И. А. Банщикова, М. А. Леган, К. А. Матвеев; Новосибирский государственный технический университет. — Новосибирск: Новосибирский государственный технический университет, 2017. — 66 с.: ил., табл. –URL: https://biblioclub.ru/index.php?page=book&id=575174
2	Присекин, В. Л. Основы метода конечных элементов в механике деформируемых тел: учебник / В. Л. Присекин, Г. И. Расторгуев; Новосибирский государственный технический университет. — Новосибирск: Новосибирский государственный технический университет, 2009. — 240 с.: табл., ил. — (Учебники НГТУ). — URL: https://biblioclub.ru/index.php?page=book&id=436040

б) дополнительная литература:

Nº	Мотолици
п/п	Источник
3.	Мухутдинов, А. Р. Основы применения ANSYS Autodyn для решения задач моделирования быстропротекающих процессов: учебное пособие / А. Р. Мухутдинов, М. Г. Ефимов. — 2-е изд. — Казань: Казанский научно-исследовательский технологический университет (КНИТУ), 2018. — 244 с.: ил. —URL: https://biblioclub.ru/index.php?page=book&id=560918

в) информационные электронно-образовательные ресурсы:

Nº ⊓/⊓	Источник
4.	Электронная библиотека ВГУ <u>www.lib.vsu.ru</u>
5.	Национальный цифровой ресурс «РУКОНТ»
6.	ЭБС «Консультант студента»
7.	ЭБС «Лань»
8.	Информационные технологии в механике / А.В. Ковалев. — Образовательный портал «Электронный университет ВГУ». — Режим доступа: https://edu.moodle.ru.

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

Самостоятельная работа обучающегося должна включать выполнение лабораторных работ и подготовку к промежуточной аттестации.

Для обеспечения самостоятельной работы студентов, в электронном курсе дисциплины на образовательном портале «Электронный университет ВГУ» сформирован учебно-методический комплекс, который включает в себя: программу курса, учебные пособия и справочные материалы, методические указания по выполнению заданий. Студенты получают доступ к данным материалам на первом занятии по дисциплине.

Указанные в учебно-методическом комплексе учебные пособия и справочные материалы, приведены в таблице ниже:

N º ⊓/⊓	Источник
1.	Присекин, В. Л. Основы метода конечных элементов в механике деформиру-емых тел: учебник / В. Л. Присекин, Г. И. Расторгуев; Новосибирский госу-дарственный технический университет. — Новосибирск: Новосибирский госу-дарственный технический университет, 2009. — 240 с.: табл., ил. — (Учебники НГТУ). — URL: https://biblioclub.ru/index.php?page=book&id=436040
2.	Электронная библиотека ВГУ <u>www.lib.vsu.ru</u>
3.	Информационные технологии в механике / А.В. Ковалев. — Образовательный портал «Электронный университет ВГУ». — Режим доступа: https://edu.moodle.ru.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

При реализации дисциплины могут проводиться различные типы лекций (вводная, обзорная и т.д.), применяться дистанционные образовательные технологии в части освоения лекционного материала, самостоятельной работы по дисциплине или отдельным ее разделам.

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий. Для организации занятий рекомендован онлайнкурс «Информационные технологии в механике», размещенный на платформе Элек-

тронного университета ВГУ (LMS moodle), а также Интернет-ресурсы, приведенные в п.15в.

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения лекций: специализированная мебель, компьютер (ноутбук), мультимедийное оборудование (проектор, экран, средства звуковоспроизведения).

Учебная аудитория для проведения лабораторных работ: специализированная мебель, персональные компьютеры для индивидуальной работы. ОС Windows 8 (10), ПО Adobe Reader, пакет стандартных офисных приложений для работы с документами, таблицами (MS Office, МойОфис, LibreOffice), ПО Pascal ABC NET, ПО Free Pascal

19. Оценочные средства для проведения текущей и промежуточной аттестаций Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисци- плины (модуля)	Компе- тен- ция(и)	Индика- тор(ы) до- стижения компетенции	Оценочные средства
1.	Компьютерные технологии и задачи прочности	ОПК-4	ОПК-4.3	Лабораторные зада- ния/домашние задания
2.	MSC.Nastran и ANSYS.Mechanical	ОПК-4	ОПК-4.3	Лабораторные зада- ния/домашние задания
3.	Компьютерные технологии и задачи гидрогазодинамики	ОПК-4	ОПК-4.3	Лабораторные зада- ния/домашние задания
4.	ANSYS.CFX и NU- MECA.Open	ОПК-4	ОПК-4.3	Лабораторные зада- ния/домашние задания
5.	Перспективы развития компьютерного моделирования	ОПК-4	ОПК-4.2	Собеседование
	Промежуточная аттестация форма контроля - зачет			Перечень вопросов

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Практикоориентированные задания/домашние задания

(наименование оценочного средства текущего контроля успеваемости)
Перечень заданий из задачников и пособий из п.16
Проводится путем проверки выполненных упражнений

Оценка	Критерии оценок			
Отлично	Правильное решение задачи.			
Хорошо	Правильное решение задачи, но есть некоторые ошибки.			
Удовлетворительно	Неправильное решение задачи, но верно выбран метод			
з довлетверительне	решения.			
Неудовлетвори-	Неправильное решение задачи, причем неверно выбран			
тельно	метод решения.			

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Практикоориентированные задания/домашние задания

(наименование оценочного средства текущего контроля успеваемости)
Перечень заданий из задачников и пособий из п.16

Оценка	Критерии оценок		
Отлично	чно Правильное решение задачи.		
Хорошо	Правильное решение задачи, но есть некоторые ошибки.		
Удовлетворительно	Неправильное решение задачи, но верно выбран метод		
	решения.		
Неудовлетвори-	Неправильное решение задачи, причем неверно выбран		
тельно	метод решения.		